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ABSTRACT
The analytical solution and algorithm for simulating the electric potential in an ar-
bitrarily anisotropic multilayered medium produced by a point DC source is here
proposed. The solution is presented as a combination of Hankel transforms of integer
order and Fourier transforms based on the analytical recurrent equations obtained for
the potential spectrum. For the conversion of the potential spectrum into the space
domain, we have applied the algorithm of the Fast Fourier Transform for logarith-
mically spaced points. A comparison of the modelling results with the power-series
solution for two-layered anisotropic structures demonstrated the high accuracy and
computing-time efficiency of the method proposed.

The results of the apparent-resistivity calculation for both traditional pole-pole and
tensor arrays above three-layered sequence with an azimuthally anisotropic second
layer are presented. The numerical simulations show that both arrays have the same
sensitivity to the anisotropy parameters. This sensitivity depends significantly on the
resistivity ratio between anisotropic and adjacent layers and increases for the models
with a conductive second layer.

I N T R O D U C T I O N

The geoelectrical study of heterogeneous anisotropic media provides important additional information about geological structures
and petrophysical rock properties. The various kinds of resistivity anisotropy in layered formations are due to the presence of
fractured systems or cross-bedded sediments. The determination of anisotropy parameters in heterogeneous anisotropic media
is a complex problem that requires fast and accurate methods for simulating the electric potential in such an environment.

The general method for solving the electromagnetic problem in an anisotropic layered medium uses 2D Fourier transforms
(2D FT) in the boundary plane. Gurevich (1975) proposed this approach for simulating vertical electrical sounding on the
surface of a half-space consisting of layers with arbitrarily orientated anisotropy axes. By applying 2D FTs, Le Masne and
Vasseur (1981) computed the electromagnetic field of sources on the surface of a homogeneous conductive half-space with a
horizontal anisotropy axis. The scheme for the numerical computation of the electric potential from a point source in a layered
earth with arbitrary anisotropy was developed by Das (1995) and extended by Li (1996) for the case of arbitrary sources. The
2D FT approach was used by Li and Pedersen (1991) to determine the electromagnetic response of a horizontal electric dipole
on the surface of an azimuthally anisotropic medium. The current density and magnetic field for a direct current source in a
layered conductor with an arbitrary anisotropy was calculated by Yin and Weidelt (1999). Yin and Maurer (2001) considered
electromagnetic induction in a layered earth with arbitrary anisotropy.
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Another approach to modelling an azimuthal resistivity sounding over a two-layered structure with arbitrarily orientated
transverse anisotropy was applied by Pervago (1998) and Bolshakov et al. (1998). In this case, the solution of the equation for
an azimuthally anisotropic medium was represented by a set of Hankel transforms of integer order. Such a solution corresponds
to the angular harmonic decomposition of the azimuthal resistivity diagrams. The analysis of the harmonic coefficients allows
the heterogeneity and anisotropy effects to be separated (Pervago et al. 2001). Additionally, by using the decomposition char-
acteristics, the sensitivity of electrical surface arrays and well-logging sondes to anisotropy was estimated by Bolshakov et al.
(1997) and Mousatov and Pervago (2002).

Here, we propose an analytical solution and computation technique for calculating the electric potential of a point DC source
in a medium composed of layers with three-axial, arbitrarily orientated anisotropy. The solution obtained is expressed by a set
of Hankel transforms of integer order. We have found recurrent expressions for the coefficients of the electric-potential spectrum
in each layer. In order to convert the potential spectrum to the space domain, we applied the algorithm of the Fast Fourier–Bessel
Transform for logarithmically spaced points (FFTLog) designed by Hamilton (2000). For the solution and algorithm verifications,
the calculation results were compared with the data published by Bolshakov et al. (1998). Using the technique developed, we
presented the responses of the traditional azimuthal resistivity surveys and advanced tensor array (Mousatov et al. 2000, 2002,
2003) above a three-layered anisotropic model.

E L E C T R I C P O T E N T I A L I N A N A N I S O T R O P I C L AY E R E D M E D I U M

The model consists of parallel homogeneous layers with three-axial, arbitrarily orientated anisotropy. We assume that the z-axis
of the Cartesian coordinate system is perpendicular to layer boundaries and is orientated downwards. The electrical conductivity
of the mth layer is defined by the tensor σm. In an anisotropic homogeneous region, the electric potential Um (x, y, z) produced
by a point source of direct current I with coordinates (xA, xA, yA) satisfies the divergence equation,

div(σmgradUm) = Iδ(x − xA, y − yA, z − zA) (1)

The solution of an inhomogeneous equation is the sum of a general solution for a homogeneous equation and the source
function. Applying the 2D Fourier transform in the horizontal xy-plane to the homogeneous equation corresponding to (1), we
obtain the homogeneous equation in the spectral domain with spatial frequencies, kx and ky:
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Here, the electric potential Um (x, y, z) and its spectrum Ũm(kx, ky, z) are the Fourier transform pair,
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In order to find the solution of (2) in the form, Ũ(z) = evz, we first obtain the quadratic equation for the parameter v,
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which has the following roots:
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Since v2,m(kx, ky) = −v∗
1,m(kx, ky) where v∗ is the complex conjugate of v, the common solution of (2) with complex coefficients

can be written as the sum of refracted and reflected parts,

Ũm(kx, ky, z) = Am(kx, ky)evmz + Bm(kx, ky)e−v∗
mz, (7)

This solution can also be written in the cylindrical coordinate system (r, ϕ, z) as a series of Hankel (Fourier–Bessel) transforms
of integer order.
Transforming to cylindrical coordinates by substituting,

x = r cos ϕ, y = r sin ϕ, kx = −kr sin kϕ, ky = kr cos kϕ,

(4) can be rewritten in the form,
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2π
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Then, using the Jacobi–Anger expansion for Bessel functions of the first kind of integer order Jn
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and introducing the modified spectrum,

˜̃Um(kr , kϕ, z) = krŨm(−kr sin kϕ, kr cos kϕ, z), (10)

we can rewrite (8) as series of the Hankel transform,
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Finally, this equation can be written in the compact form,
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The complex harmonic coefficient Cm
n (r, z) is defined by the Fourier and Hankel transforms with spatial frequencies kr, kϕ as
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The application of the Hankel transform allows us to avoid the singularity of the potential spectrum of a point DC source at
spatial frequency zero, if the 2D Fourier method is used. Additionally, in this case, the potential spectrum is discrete and its
harmonic coefficients decrease rapidly when the harmonic number increases.

If the medium is isotropic, the modified spectrum does not depend on the spatial frequency kϕ , i.e.

˜̃Um(kr , kϕ, z) = ˜̃Um(kr , z),

and the harmonic coefficients Cm
n (r, z) become equal to zero for all n �= 0 due to the property of the Fourier integral,

1
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Thus, the potential Um(r, z) is equal to the zeroth harmonic coefficient Cm
0 (r, z) (equation (12), and 11 is converted into the

well-known solution in the form of the Hankel integral,

Um(r, z) =
∫ ∞

0
J0(krr ) ˜̃Um(kr , z) dkr .
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Combining (7) and (10), the modified spectrum function ˜̃Um(kr , kϕ, z) in the mth layer can be written as

˜̃Um(kr , kϕ, z) = Ã(kr , kϕ)ewmkr z + B̃m(kr , kϕ)e−wmkr z, (14)

where
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The vertical component of the current density vector jz,m in the mth layer can be expressed in terms of the conductivity
tensor σ m and the potential Um as
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After a Fourier transformation of (19), the spectrum j̃ z,m(kx, ky, z) has the following form:
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Using the modified potential spectrum (10) in cylindrical coordinates, we obtain the Hankel spectrum for the vertical component
of the current density tensor,
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Substituting (14) for ˜̃Um(kr , kϕ, z) into (21), the spectrum ˜̃j z,m(kr , kϕ, z) can be written as

˜̃j z,m(kr , kϕ, z) = kr
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The unknown coefficients, Ãm(kr , kϕ) and B̃m(kr , kϕ), can be found using the boundary conditions,

˜̃Um(kr , kϕ, zm) = ˜̃Um+1(kr , kϕ, zm), (26)

˜̃j z,m(kr , kϕ, zm) = ˜̃j z,m+1(kr , kϕ, zm). (27)

Using the conditions far from the source point, i.e.

˜̃U0(kr , kϕ, z) → 0, z → −∞, (28)

˜̃UN(kr , kϕ, z) → 0, z → +∞, (29)
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as well as the ˜̃UM(kr , kϕ, z) continuity and the ˜̃j z,M(kr , kϕ, z) discontinuity on the plane zA of a source placed in the Mth layer
when ε tends to zero (ε → 0), we have

˜̃UM(kr , kϕ, zA + ε) − ˜̃UM(kr , kϕ, zA − ε) = ˜̃U0
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By substituting (32) and (33) into (30) and (31), we obtain the following conditions on the source plane:

˜̃UM(kr , kϕ, zA + ε) − ˜̃UM(kr , kϕ, zA − ε) = 0, (34)

˜̃j z,M(kr , kϕ, zA + ε) − ˜̃j z,M(kr , kϕ, zA − ε) = Ikr

2π
. (35)

On solving this system of linear equations, we obtain the analytical recurrent equations for the coefficients, Ãm(kr , kϕ) and
B̃m(kr , kϕ) (see Appendix).

After determining the quantities, Ãm(kr , kϕ) and B̃m(kr , kϕ), we calculate the spectrum of the electric potential (14) and then
the complex harmonic coefficients using (13). Because the internal integral in (13) corresponds to the Fourier transform,

Dm
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˜̃Um(kr , kϕ, z) e−inkϕ dkϕ, (36)

it is convenient to perform its evaluation using the FFT method. The external integral of (12) represents the Hankel transform
of integer order,
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In geophysical applications, the calculation of the Hankel integral is presented with a specific problem as a limited number
of points has to cover a relative distance range of 104–105. In the case of linearly spaced points (normal scale), the matrices of
transforms are large (104 × 104 – 105 × 105). To avoid this problem, we applied the algorithm of the Fast Fourier Transform in
logarithmically spaced points (FFTLog, developed by Hamilton (2000). Similarly to the normal FFT, the FFTlog method gives
the exact Fourier transform of a discrete function that is periodic and uniformly spaced in logarithmic space (Talman 1978).
The FFTLog calculates the fast Fourier and Hankel (Fourier–Bessel) transform of arbitrary order for a relative distance range of
several orders with a limited number of points. The algorithm proposed by Hamilton (2000) converts the computation of the
Hankel transform into two FFTs performed sequentially, and it improves the accuracy and speed of computation.

S I M U L AT I O N E X A M P L E

Based on the analytical solution and the calculation algorithms presented above, we simulated apparent-resistivity curves for
the vertical electrical soundings in media composed of transversely anisotropic layers. These media are of interest for practical
applications and correspond to geological structures formed by fractured rocks or intercalation of electrically contrasting thin
beds. In this case, we assume that each layer is azimuthally anisotropic with the anisotropy axis perpendicular to the vertical
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axis z. In the local coordinate system that coincides with the anisotropy axes, the conductivity tensor of the mth layer is given by

σ̂ m =




σ m
η 0 0

0 σ m
τ 0

0 0 σ m
τ


 (38)

If the Cartesian coordinate system is used throughout the model, the conductivity tensor σm can be written as

σm = RT
mσ̂ mRm, (39)

where

Rm =


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cos βm sin βm 0

− sin βm cos βm 0

0 0 1


 is the rotation matrix, (40)

βm denotes the rotation angle around the z-axis.
All simulations were performed for the relative distance of 1012–1013 with a total of 128–256 points for the electric potential

spectra.
To verify the technique described above, we calculated the harmonics of the apparent resistivity using our approach and

the analytic solution given by power series obtained for the special case of the two-layered azimuthally anisotropic model
(Bolshakov et al. 1998). In this model, the anisotropy axes in each layer are arbitrarily orientated in the boundary plane and are
described by the conductivity tensor (39). Each layer m is characterized by the anisotropy coefficient λm and the mean resistivity
ρ̄m = (σm

τ σ
m
η )−1/2. The result of observations above an anisotropic medium is usually given as the apparent resistivity ρ a, which

can also be written as the sum of harmonics,

ρa(r, ϕ, z) =
∞∑

n=−∞
Cρ

n (r, z)einϕ, (41)

where Cρ
n(r, z) is the complex amplitude of the nth harmonic.

It is convenient to compare the coefficients Cρ
n(r, z) of the apparent-resistivity harmonics because the zeroth harmonic

amplitude is much higher than the amplitude of any other harmonic and a comparison of the apparent resistivities (harmonic
sums) will not be relevant (Fig. 1). The Cρ

n(r, z) graphs are plotted as a function of the normalized distance R/h where R is the
array spacing and h is the upper layer thickness. These graphs demonstrate good agreement between the two analytical solutions
and indicate the high accuracy of simulation. The relative error in this case is less than 10−8 for all harmonics shown.

We simulated the apparent resistivity ρ a and apparent anisotropy coefficient λa for a traditional azimuthal survey with a
pole-pole array on the surface of three-layered structures for different model parameters and observation azimuths (Fig. 2). In
this model, the second layer is transversely anisotropic with the anisotropy axis perpendicular to the vertical axis z (azimuthally
anisotropic layer). The apparent-anisotropy coefficient λa was calculated as the ratio of the apparent resistivities measured
perpendicular to and along the anisotropy axis. When the mean resistivity of the anisotropic second layer is higher than the
resistivity of adjacent layers (ρ1 = ρ3 = 1, ρ2 = 20), the apparent-resistivity coefficient does not exceed the value 1.1, even for the
true value λ2 = 4 and thickness h2 = 2h1. For the conductive anisotropic layer (ρ1 = ρ3 = 20, ρ2 = 1), the apparent-anisotropy
coefficient takes high enough values, even for a small relative thickness of the second layer, h2 = 0.2h1. In this case, the behaviour
of the ρ a and λa curves shows the feasibility of thin anisotropic-layer detection by performing measurements on various azimuths
(the traditional technology of an array rotation around a reference point).
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Figure 1 Comparison of the coefficientsCρ
n of the apparent-resistivity harmonics calculated for the two-layered azimuthally anisotropic structure

by the power-series (solid line) and by the technique presented (circles). The curve index is the harmonic number. Model parameters are (A): ρ

= 1, 100 �m, λ = 1, 2; (B): ρ = 100, 1 �m, λ = 1, 2. R/hours is the normalized spacing.

Figure 2 The apparent resistivity ρa (A) (B) and the apparent-anisotropy coefficients λa (C) (D) for a pole-pole array above the three-layered
structures with an azimuthally anisotropic second layer. Model parameters are (A) (C): ρ = 1, 20, 1 �m, h1 = h; (B) (D): ρ = 20, 1,
20 �m, h1 = h. 1: λ = 1, 2, 1, h2 = 0.2 h; 2: λ = 1, 2, 1, h2 = 2 h; 3: λ = 1, 4, 1, h2 = 0.2 h; 4: λ = 1, 4, 1, h2 = 2 h. AM/h is the
normalized spacing.
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Figure 3 Scheme of the current and measuring electrode distribution for the tensor array, TENFD.

Figure 4 The apparent mean resistivity ρ̄a (A) (B) and apparent-anisotropy coefficients λa (C) (D) for the tensor array, TENFD., above three-
layered structures with an azimuthally anisotropic second layer. The model parameters correspond to those given in Figure 2. AO/h is the
normalized spacing.

Additionally, for the same models, we calculated the response of the tensor arrays, proposed by Mousatov et al. (2000, 2002,
2003), for the anisotropy parameter determination in heterogeneous media. This array (TENFD) is based on the measurements
of the first (�Ux = U2–U1, �Uy = U3–U4) and second (�Uyy = 2U0–U3–U4) differences of the electric potential from a point
source (Fig. 3). The tensor array provides the determination of all anisotropy parameters (mean resistivity, anisotropy coefficient
and azimuth of anisotropy axis) by carrying out the observation in one arbitrary direction only, and it does not require the array
rotation. The apparent mean resistivities and apparent-anisotropy coefficients λa obtained by the TENFD (Fig. 4) are similar to
the parameters measured by the conventional azimuthal survey.

C O N C L U S I O N S

The analytical solution for media composed of arbitrarily anisotropic layers was obtained. Based on this solution, we developed
an algorithm for the simulation of the electric field produced by a point DC source in an anisotropic multilayered medium.
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Comparison of the modelling results with the power series solution published for two-layered anisotropic structures demon-
strated the high accuracy and computing-time efficiency of the method proposed.

The analytical solution obtained is expressed as a sum of discrete angular harmonics with rapidly decreasing coefficients
when the harmonic number increases. These harmonic coefficients are given by a set of Hankel transforms of integer order.
Application of the Hankel transform allows us to avoid the singularity of the electric-potential spectrum at the spatial frequency
zero that appears in the 2D Fourier transform.

To calculate the Hankel transform we applied the fast Fourier-Bessel transform for logarithmically distributed points, thus
providing high accuracy of calculation and significantly reducing the computation time. This calculation algorithm can be used
to model the electric field for surface and borehole arrays, designed to determine the anisotropy parameters in heterogeneous
media with plane or cylindrical layers.
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A P P E N D I X

For computing convenience (14) and (22) can be rewritten in the following form (Fig. 5):
for the layers below the source point (z ≥zA,m = M,. . ., N):

˜̃U+
m(kr , kϕ, z) = b+

m

(
a+

mewmkr (z−zm) + e−w∗
mkr (z−zm)

)
, (A1)
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Figure 5 Scheme for calculating the coeffi-
cients a−

m, a+
m, b−

m, b+
m, in an anisotropic mul-

tilayered medium.

˜̃J +
z,m(kr , kϕ, z) = kr b+

m

(
cma+

mewmkr (z−zm) + dme−w∗
mkr (z−zm)

)
, (A2)

and for the layers above the source point (z ≤ zA,m = 0, . . . , M):

˜̃U−
m(kr , kϕ, z) = b−

m

(
a−

me−w∗
mkr (z−zm−1) + ewmkr (z−zm−1)

)
, (A3)

˜̃J −
z,m(kr , kϕ, z) = kr b−

m

(
dma−

me−w∗
mkr (z−zm−1) + cme

wmkr (z−zm−1

)
), (A4)

where

a+
m = Ãm/B̃me2Re(wm)kr zm, (A5)

b+
m = B̃me−w∗

mkr zm, (A6)

a−
m = B̃m/Ãme−2Re(wm)kr zm−1 , (A7)

b−
m = Ãmewmkr zm−1 . (A8)

In these equations, zm−1 and zm are the top and bottom of the mth layer.
Using expressions (A1)–(A4), the system of equations (26–29) and (34,35) can be rewritten as follows:

a−
0 = 0, (A9)

m = 1..,M,

b−
m−1

(
a−

m−1e−w∗
m−1kr hm−1 + ewm−1kr hm−1

)
= b−

m

(
a−

m + 1
)
, (A10)

b−
m−1

(
dm−1a−

m−1e−w∗
m−1kr hm−1 + cm−1ewm−1kr hm−1

)
= b−

m

(
dma−

m + cm
)
, (A11)

b+
M

(
a+

MewMkr (zA−zM) + e−w∗
Mkr (zA−zM)

)
− b−

M

(
a−

Me−w∗
Mkr (zA−zM−1) + ewMkr (zA−zM−1)

)
= 0, (A12)
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b+
M

(
cMa+

MewMkr (zA−zM) + dMe−w∗
Mkr (zA−zM)

)
−b−

M

(
dMa−

Me−w∗
Mkr (zA−zM−1) + cMewMkr (zA−zM−1)

)
= I

2π
, (A13)

and m = M, . . . , N – 1,

b+
m

(
a+

m + 1
) = b+

m+1

(
a+

m+1e−wm+1kr hm+1 + ew∗
m+1kr hm+1

)
, (A14)

b+
m

(
cma+

m + dm
) = b+

m+1

(
cm+1a+

m+1e−wm+1kr hm+1 + dm+1ew∗
m+1kr hm+1

)
, (A15)

a+
N = 0 (A16)

where hm = zm − zm−1 is the mth layer thickness.
Starting from the known coefficients, a−

0 and a+
N, we can find the coefficients a+

m, and a−
m, sequentially towards the Mth layer,

which contains the source (Fig. 5):

a−
m = (cm−1 − cm) + a−

m−1(dm−1 − cm)e−2Re(wm−1)kr hm−1

(cm−1 − dm) + a−
m−1(dm−1 − dm)e−2Re(wm−1)kr hm−1

, m = 1, . . . , M, (A17)

a+
m = (dm − dm+1) + a+

m+1(dm − cm+1)e−2Re(wm+1)kr hm+1

(cm − dm+1) + a+
m+1(cm − cm+1)e−2Re(wm+1)kr hm+1

, m = N − 1, . . . , M. (A18)

The coefficients, b−
M and b+

M, in the Mth layer, which contains the source, can be found based on (A12) and (A13):

b−
M = I

2π

1 + a+
me−2Re(wM)kr (zM−zA)

(cM − dM)(a+
Ma−

Me−2Re(wM)kr hM − 1)
e−wMkr (zA−zM−1), (A19)

b+
M = I

2π

1 + a−
me−2Rc(wM)kr (zA−zM−1)

(cM − dM)(a+
Ma−

Me−2Rc(wM)kr hM − 1)
e−w∗

Mkr (zM−zA). (A20)

Finally, the coefficients, b+
M and b−

M, are expressed through the coefficients previously obtained from the layers above and
below the layer containing the source:

b−
m = b−

m+1

1 + a−
m+1

a−
me−w∗

mkr hm + ewmkr hm
, m = M − 1, . . . , 0, (A21)

b+
m = b+

m−1

1 + a+
m−1

a+
me−wmkr hm + ew∗

mkr hm
, m = M + 1, . . . , N. (A22)
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